Transcriptional regulation of the stress-responsive light harvesting complex genes in Chlamydomonas reinhardtii.

نویسندگان

  • Shinichiro Maruyama
  • Ryutaro Tokutsu
  • Jun Minagawa
چکیده

Dissipating excess energy of light is critical for photosynthetic organisms to keep the photosynthetic apparatus functional and less harmful under stressful environmental conditions. In the green alga Chlamydomonas reinhardtii, efficient energy dissipation is achieved by a process called non-photochemical quenching (NPQ), in which a distinct member of light harvesting complex, LHCSR, is known to play a key role. Although it has been known that two very closely related genes (LHCSR3.1 and LHCSR3.2) encoding LHCSR3 protein and another paralogous gene LHCSR1 are present in the C. reinhardtii genome, it is unclear how these isoforms are differentiated in terms of transcriptional regulation and functionalization. Here, we show that transcripts of both of the isoforms, LHCSR3.1 and LHCSR3.2, are accumulated under high light stress. Reexamination of the genomic sequence and gene models along with survey of sequence motifs suggested that these two isoforms shared an almost identical but still distinct promoter sequence and a completely identical polypeptide sequence, with more divergent 3'-untranscribed regions. Transcriptional induction under high light condition of both isoforms was suppressed by treatment with a photosystem II inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a calmodulin inhibitor W7. Despite a similar response to high light, the inhibitory effects of DCMU and W7 to the LHCSR1 transcript accumulation were limited compared to LHCSR3 genes. These results suggest that the transcription of LHCSR paralogs in C. reinhardtii are regulated by light signal and differentially modulated via photosynthetic electron transfer and calmodulin-mediated calcium signaling pathway(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent no...

متن کامل

Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii.

Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (P...

متن کامل

Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii.

Photobiological hydrogen production using microalgae is being developed into a promising clean fuel stream for the future. In this study, microarray analyses were used to obtain global expression profiles of mRNA abundance in the green alga Chlamydomonas reinhardtii at different time points before the onset and during the course of sulfur-depleted hydrogen production. These studies were followe...

متن کامل

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

CO(2)-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii.

Chlamydomonas reinhardtii adapts to the stress of CO(2)-limiting conditions through the induction of a set of genes including CAH1, which encodes a periplasmic carbonic anhydrase. CAH1 is up-regulated under low-CO(2) conditions (air containing 0.04% [v/v] CO(2)) in the presence of light, whereas it is down-regulated under high-CO(2) conditions (5% [v/v] CO(2)) or in the dark. In an effort to id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 55 7  شماره 

صفحات  -

تاریخ انتشار 2014